
A Poker Simulation Application

35.1 Introduction

This final application is possibly less serious than the other applications in the
book, but it should be interesting to poker players, and it contains some interest-
ing VBA code. In case you are not a poker player, a player is dealt five cards from
a 52-card deck. There are several types of hands the player can be dealt, as
described in the following list:

● A pair: two of some denomination and three of other distinct denominations
● Two pairs: two of one denomination, two of another denomination, and

another card
● Three of a kind: three of one denomination and two of other distinct

denominations
● A straight: five denominations in progression, such as 4, 5, 6, 7, 8
● A flush: five cards of the same suit, such as five hearts
● A full house: three of one denomination and two of another

denomination
● Four of a kind: four of one denomination and another card
● Straight flush: a straight, all of the same suit
● A bust: none of the above

Except for a bust, the hands in this list are shown in increasing value. For
example, three of a kind beats two pairs, and they all beat a bust.

The application simulates 100,000 five-card hands, all from a “well-
shuffled” 52-card deck, and counts the number of each type of hand in the
above list. It is interesting to see whether the probabilities of the various hands
go in the opposite order of their values. For example, is two pairs more likely
than three of a kind? The simulation will help answer this question.

New Learning Objectives: VBA

● To illustrate how VBA can perform a simulation completely with code—no
spreadsheet model.

● To illustrate how rather complex logic can be accomplished with the use of
appropriate If constructs, loops, and arrays.

35

715

New Learning Objectives: Non-VBA

● To show how simulation can be used to see how a game like poker works
and whether its rules are reasonable. (Do the values of the hands go along
with their likelihoods?)

35.2 Functionality of the Application

The purpose of this application is to repeatedly simulate five-card hands from a
52-card deck, tally the numbers of hands of each type, and display the relative fre-
quencies in a worksheet.

35.3 Running the Application

The application is stored in the file Poker.xlsm. This file contains a single work-
sheet named Report, shown in Figure 35.1, which the user sees upon opening the
file. Each time the user clicks the button, 100,000 new five-card hands are simu-
lated, all from a fresh 52-card deck, and the results are displayed in the worksheet,
as shown in Figure 35.2.

I say that 100,000 new hands are simulated because each run uses a new set
of random numbers for the simulation. Therefore, the results will be slightly

Figure 35.1 Report Worksheet Before Running Simulation

716 Chapter 35

different each time the application is run. Figure 35.3 shows results from a different
set of 100,000 hands. They are very similar to the results in Figure 35.2, but they
are not exactly the same. This is the nature of simulation. You will undoubtedly get
slightly different results each time you run it.

Each of these runs illustrates what can be shown from a formal probability
argument—the probabilities of the hands go in reverse order of the values of the
hands. A bust is most likely, a pair is next most likely, and so on.1 And if you are
counting on getting four of a kind or a straight flush, dream on!

Figure 35.2 Results from a Simulation Run

Figure 35.3 Results from Another Simulation Run

1Again, because of the nature of simulation, it is possible that you will get results where, for example,
there are more flushes than straights, but this is due to what statisticians call sampling error.

A Poker Simulation Application 717

35.4 Setting Up the Excel Sheets

There is really nothing to set up at design time other than to enter labels and for-
mat the Report worksheet, as shown in Figure 35.1. There is nothing “hidden”
here. Other than labels, the worksheet is blank, waiting for the simulated results.
Furthermore, the simulation occurs completely in VBA code. There is no work-
sheet for calculations.

35.5 Getting Started with the VBA

The application requires only a module—no user forms or references. After the
module is added, the Project Explorer window will appear as in Figure 35.4.

Workbook_Open Code

The following code is placed in the ThisWorkbook code window. It clears results
from any previous simulation run.

Private Sub Workbook_Open()
With wsReport

.Range("D10:D20").ClearContents

.Range("C6").Select
End With

End Sub

35.6 The Module

To this point, you might think this application is a fun little exercise for card
players. However, the VBA code is far from trivial. It requires some careful logic,
and it makes heavy use of arrays. It is an interesting illustration of how humans
can easily perceive patterns that computers can discover only with intricate

Figure 35.4 Project Explorer Window

718 Chapter 35

programming. For example, a poker player can look at his hand, without even
rearranging the cards, and immediately see that he has a pair, a straight, or what-
ever. As the code will show, however, it takes a considerable amount of code to
recognize these patterns.

The module-level variables are listed first. As in previous chapters, they are
declared with the keyword Dim, not with Public. These module-level variables
need to be declared at the top of the module, outside of the subs, so that all of
the subs in the module can recognize them.

Option Statement and Module-Level Variables

Option Explicit

' Definitions of module-level variables and constant:
' nBust - number of the 100,000 hands that results in a bust (with similar
' definitions for nPair, n2Pair, etc.
' denom - array that indicates which denomination (1 to 13) each card
' in the deck is
' card - array that indicates the cards in the hand - e.g., if card(3) = 37,
' this means the third card dealt is the 37th card in the deck
' nReps - number of simulated hands, in this case 100,000

Dim nBust As Long, nPair As Long, n2Pair As Long, n3ofKind As Long, _
nFullHouse As Integer, n4ofKind As Integer, nStraight As Integer, _
nFlush As Integer, nStraightFlush As Integer

Dim denom(1 To 52) As Integer
Dim card(1 To 5) As Integer

Const nReps = 100000

Main Code

The Main sub runs when the user clicks the button on the Report worksheet. It
first calls the InitializeStats sub to set all counters to 0. Next, it calls the SetupDeck
sub to “define” the cards in the deck. Then it uses a For loop to run the 100,000
replications of the simulation. In each replication it calls the Deal sub to deal the
cards and the EvaluateHand sub to check what type of hand is obtained. Finally, it
calls the Report sub to put the results in the Report worksheet. VBA’s Randomize
function is placed near the top of the Main sub to ensure that a new set of random
numbers is used each time the simulation is run.

Sub Main()
Dim iRep As Long ' replication index
Randomize

' Set counters to 0.
Call InitializeStats

' "Name" the cards in the deck.

A Poker Simulation Application 719

Call SetupDeck

' Deal out nReps poker hands and evaluate each one.
For iRep = 1 To nReps

Call Deal
Call EvaluateHand

Next

' Report the summary stats from the nReps hands.
Call Report

wsReport.Range("C6").Select
End Sub

InitializeStats Code

The InitializeStats sets all counters (the number of busts, the number of pairs, and
so on) to 0.

Sub InitializeStats()
nBust = 0
nPair = 0
n2Pair = 0
n3ofKind = 0
nStraight = 0
nFlush = 0
nFullHouse = 0
n4ofKind = 0
nStraightFlush = 0

End Sub

SetupDeck Code

The SetupDeck sub “defines” the deck by filling the denom array. It does this with
two nested For loops. If you follow the logic closely, you will see that denom(1)
through denom(4) are set to 1 (corresponding to the Aces), denom(5) through
denom(8) are set to 2 (corresponding to the 2s), and so on. You can think of
denomination 11 as the Jacks, denomination 12 as the Queens, and denomina-
tion 13 as the Kings. Also, there are no explicit hearts, diamonds, clubs, and
spades, but you can think of cards 1, 5, 9, and so on as the hearts; cards 2, 6,
10, and so on as the diamonds; cards 3, 7,11, and so on as the clubs; and cards
4, 8,12, and so on as the spades.

Sub SetupDeck()
Dim iDenom As Integer ' denomination index
Dim iSuit As Integer ' suit index
' Give the first 4 cards denomination 1 (aces),
' the next 4 denomination 2 (deuces), and so on
For iDenom = 1 To 13

For iSuit = 1 To 4
denom(4 * (iDenom - 1) + iSuit) = iDenom

720 Chapter 35

Next
Next

End Sub

Deal Code

The Deal sub randomly chooses five cards from the 52-card deck. It is the only
sub where any simulation takes place; that is, it is the only code that uses random
numbers. It uses VBA’s Rnd function (which is essentially equivalent to Excel’s
RAND function) to simulate a single random number uniformly distributed
between 0 and 1. The following line generates a uniformly distributed integer
from 1 to 52:

cardIndex = Int(Rnd * 52) + 1

Note how this works. The quantity Rnd * 52 is a uniformly distributed deci-
mal number between 0 and 52. Then VBA’s Int function chops off the decimal,
leaving an integer from 0 to 51. Finally, 1 is added to obtain an integer from
1 to 52.

The Boolean isUsed array keeps track of which of the 52 cards in the deck
have already been dealt in the current hand. Essentially, random integers are gen-
erated until five distinct integers have been obtained. When an integer is gener-
ated that is distinct from the previous integers, its isUsed value is set to True, so
that it cannot be used again (in this hand). By the end of this sub, the indexes of
the five cards dealt are stored in the card array. For example, if card(4) = 47, this
means that the fourth card in the hand is the 47th card in the deck (the Queen of
clubs).

Sub Deal()
Dim i As Integer ' index of cards in deck
Dim j As Integer ' index of cards in hand
Dim cardIndex As Integer
Dim used(1 To 52) As Boolean
Dim newCard As Boolean

' Initially, no cards have been dealt.
For i = 1 To 52

used(i) = False
Next

' For each of 5 cards, keep generating until a new card is dealt.
For j = 1 To 5

newCard = False
Do

cardIndex = Int(Rnd * 52) + 1
If Not used(cardIndex) Then

newCard = True
used(cardIndex) = True

End If

A Poker Simulation Application 721

Loop Until newCard = True

' Records the card number this card in this hand.
card(j) = cardIndex

Next
End Sub

EvaluateHand Code

The most difficult part of the program is the EvaluateHand sub. By this time, the
card array has been generated. It might show that the hand contains the cards 2,
7, 19, 28, and 47. What kind of a hand is this? Is it a bust, a pair, or what? The
Evaluate sub goes through the necessary logic to check all possibilities.

The first check is for a straight. It finds the denominations of the five cards
and stores them in the cardDenom array. For example, the denomination of the
first card is denom(card(1)), which is stored in cardDenom(1). These denominations
might be out of order, such as 5, 3, 7, 6, 4, so it uses two nested For loops to sort
them in increasing order. It then checks whether the sorted denominations form
a progression, such as 3, 4, 5, 6, 7. (If this sounds overly complex, just try doing
it any other way.)

The second check is for a flush. For example, the hand with cards 3, 15, 23,
39, 51 is a flush. This is because cards 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43,
47, and 51 are the 13 cards of one suit (clubs, say). An easy way to check
whether any five cards are of the same suit is to divide each of them by 4 and
see whether the remainders are all equal. (This is the case for 3, 15, 23, 39, and
51; each has remainder 3.) This can be done with VBA’s Mod function. For exam-
ple, 51 Mod 4 is the remainder when 51 is divided by 4.

If the hand is a straight or a flush (or both), no further checks are necessary.
Otherwise, checks for a pair, two of a kind, and the others are necessary. All of
these involve the numbers of like denominations in a hand. For example, a hand
with two pairs contains two of some denomination, two of another, and one of
another. The groups array is used to collect this information. A full house has
groups(3) = 1 and groups(2) = 1, which says that it has one group of size 3 and one
group of size 2. Similarly, a bust has groups(1) = 5, three of a kind has groups(3) = 1
and groups(1) = 2, and so on. So by filling the groups array and checking its con-
tents, the program can discover which type of hand has been dealt.

Sub EvaluateHand()
Dim i As Integer, j As Integer
Dim count(1 To 13) As Integer, groups(1 To 4) As Integer
Dim hasStraight As Boolean, hasFlush As Boolean
Dim cardDenom(1 To 5) As Integer, temp As Integer

' First, check for a straight.
hasStraight = False
For i = 1 To 5

cardDenom(i) = denom(card(i))
Next

722 Chapter 35

' Sort the denominations in increasing order.
For i = 1 To 4

For j = i + 1 To 5
If cardDenom(j) < cardDenom(i) Then

temp = cardDenom(j)
cardDenom(j) = cardDenom(i)
cardDenom(i) = temp

End If
Next

Next

' Check if they are in a progression, like 4, 5, 6, 7, 8.
' If you consider Aces as denomination 13, then this code
' counts only "Ace high" straights.
If cardDenom(2) = cardDenom(1) + 1 And _

cardDenom(3) = cardDenom(2) + 1 And _
cardDenom(4) = cardDenom(3) + 1 And _
cardDenom(5) = cardDenom(4) + 1 Then
hasStraight = True
nStraight = nStraight + 1

End If

' Next, check for a flush.
hasFlush = False
If card(1) Mod 4 = card(2) Mod 4 And card(2) Mod 4 = card(3) Mod 4 _

And card(3) Mod 4 = card(4) Mod 4 And _
card(4) Mod 4 = card(5) Mod 4 Then

hasFlush = True
nFlush = nFlush + 1

End If

' Next, check for a straight flush.
If hasStraight And hasFlush Then

nStraightFlush = nStraightFlush + 1
' Don't count this a straight or a flush.
nStraight = nStraight - 1
nFlush = nFlush - 1

End If

' There's no need to check the rest if the hand is a straight
' or a flush (or both).
If hasStraight Or hasFlush Then Exit Sub

' Otherwise, check all the other possibilities.
' count(i) is the number of cards of denomination i in the hand.
For i = 1 To 13

count(i) = 0
Next
For i = 1 To 5

count(denom(card(i))) = count(denom(card(i))) + 1
Next

' groups(i) will be the number of "groups" of size i.
' For example, if groups(2) = 1, then there is one group of
' size 2, that is, one pair (of some denomination).
For i = 1 To 4

groups(i) = 0
Next
For i = 1 To 13

A Poker Simulation Application 723

If count(i) > 0 Then groups(count(i)) = groups(count(i)) + 1
Next

' Now go through all of the possibilities.
If groups(1) = 5 Then

nBust = nBust + 1
ElseIf groups(1) = 3 And groups(2) = 1 Then

nPair = nPair + 1
ElseIf groups(1) = 1 And groups(2) = 2 Then

n2Pair = n2Pair + 1
ElseIf groups(1) = 2 And groups(3) = 1 Then

n3ofKind = n3ofKind + 1
ElseIf groups(2) = 1 And groups(3) = 1 Then

nFullHouse = nFullHouse + 1
Else

n4ofKind = n4ofKind + 1
End If

End Sub

Report Code

The Report sub lists the results in the Report worksheet. Note that it reports
the relative frequencies, such as the number of busts divided by the total number
of replications. The formula in cell D20 is not really necessary, but it provides
a comforting check that the relative frequencies sum to 1, as they should. If a
number other than 1 appeared in cell D20, this would indicate a bug in the
program.

Sub Report()
With wsReport

.Range("D10").Value = nBust / nReps

.Range("D11").Value = nPair / nReps

.Range("D12").Value = n2Pair / nReps

.Range("D13").Value = n3ofKind / nReps

.Range("D14").Value = nStraight / nReps

.Range("D15").Value = nFlush / nReps

.Range("D16").Value = nFullHouse / nReps

.Range("D17").Value = n4ofKind / nReps

.Range("D18").Value = nStraightFlush / nReps

' Check that they sum to 1.
.Range("D20").Formula = "=Sum(D10:D18)"

End With
End Sub

35.7 Summary

The application in this chapter is not earthshaking, except perhaps to avid poker
players, but it does illustrate an interesting and certainly nontrivial use of logic,
loops, and arrays. In addition, the results of the simulation agree with our
intuition about the game of poker itself. They show that as hands become more
valuable, they become less likely. And if you always thought you were unlucky

724 Chapter 35

because you got a lot of busts, you now realize that this happens about 50% of
the time.

EXERCISES

1. Change the application so that it contains a chart sheet displaying the frequencies
of the various types of hands, as in Figure 35.5. Put a button on the Report work-
sheet to navigate to this chart sheet. (Do you need to write any code to update
the chart after each run?)

2. There are many versions of poker. Change the application so that it works for a
version where the player is dealt six cards and then gets to discard any one of
them. Assume that the player will discard the card that makes the remaining
hand as valuable as possible. (Hint: Probably the simplest approach is to run the
EvaluateHand sub on each of the possible five-card hands with one of the six cards
omitted and take the best.)

3. A more realistic version of the previous exercise is where the player is dealt five
cards. He can discard as many as four of these and request replacements from the
remaining deck. The problem with simulating this version is that you have to
know the player’s strategy—depending on what he is dealt and what he will discard.
Simulate the following strategy.

Figure 35.5 Frequency Chart for Exercise 1

Distribution of Types of Hands

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

Bust Straight

View Report

One
pair

Two
pairs

Three of
a kind

Flush Full
house

Four of
a kind

Straight
flush

A Poker Simulation Application 725

● If dealt a bust, discard all but a single card. (Normally, a player would keep
the highest card, but it doesn’t make any difference here.)

● If dealt a pair, keep the pair and discard the other three cards.
● If dealt two pairs, keep the pairs and discard the other card.
● If dealt three of a kind, keep these three and discard the other two cards.
● If dealt any other type of hand, keep it and discard nothing.

4. (More difficult) In the preceding exercise, the player never tries to “fill in” partial
straights or flushes. For example, if he has a 4, 5, 6, 7, and 10, he doesn’t discard
the 10, hoping to fill the straight with a 3 or an 8. Similarly, if he has four hearts
and a spade, he doesn’t discard the spade, hoping to fill the flush with another
heart. Simulate such a strategy. Specifically, assume he first checks for a bust. If
he has a bust, he checks whether he has a partial straight that could be completed
on either end. (This means, for example, 4, 5, 6, 7, but not 1, 2, 3, 4. Trying to
complete this latter straight is too risky because only a 5 will do it.) If he has such
a partial “inside” straight, he discards the other card. Otherwise, still assuming he
has a bust, he checks whether he has four cards of one suit. If so, he discards the
other card. Otherwise, he discards any four cards from the bust. The rest of his
strategy is the same as the last four bulleted points in the previous exercise. In
other words, he tries to complete a straight or a flush only when he has a bust.
Based on your simulation results, is this strategy better or worse than the strategy
in the previous exercise?

5. In the game of bridge, each of four players is dealt 13 cards from a 52-card deck.
Concentrate for now on a particular player. Develop a simulation similar to the
poker simulation that finds the distribution of the number of aces the player is
dealt. (Note: Since you are concentrating on one player only, you need to simu-
late 13 cards only; you can ignore what the other three players get.)

6. Continuing the previous exercise, again concentrate on a single player and simu-
late the distribution of the maximum number of any suit the player is dealt. For
example, if the hand has five hearts, three diamonds, three clubs, and two spades,
this maximum number is 5. How likely is it that a player will get at least 11 cards
of some suit?

726 Chapter 35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 595
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Use these settings to create press-ready Adobe PDF documents for Cengage Learning books using Distiller 8.0.x. The resulting PDF will be compatible with Acrobat 8 \(PDF 1.7\) per CL File Preparation and Certification Task Force)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

